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Abstract

The stability of a horizontal fluid saturated sparsely packed porous layer heated from below and cooled form above

when the solid and fluid phases are not in local thermal equilibrium is examined analytically. The Lapwood–Brinkman

model is used for the momentum equation and a two-field model is used for energy equation each representing the solid

and fluid phases separately. Although the inertia term is included in the general formulation, it does not affect the sta-

bility condition since the basic state is motionless. The linear stability theory is employed to obtain the condition for the

onset of convection. The effect of thermal non-equilibrium on the onset of convection is discussed. It is shown that the

results of Darcy model for the non-equilibrium case can be recovered in the limit as Darcy number Da ! 0. Asymptotic

analysis for both small and large values of the inter phase heat transfer coefficient H is also presented. An excellent

agreement is found between the exact solutions and asymptotic solutions when H is very small.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of convective instability of horizontal

porous layer subject to an adverse temperature gradient

has been investigated extensively by several authors in

the past [1–5]. It is important to note that all the

above-mentioned studies are based on the Darcy model.

However, it is now realized that the Darcy model is

applicable only under special circumstances and a gener-
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alized model for the accurate prediction of convection in

a porous media must include Brinkman viscous term

and Forchheimer inertia term. During the last decade,

there has been a great upsurge of interest in determining

the effects of extensions to Darcy�s law since many prac-

tical applications involve media for which Darcy�s law is

inadequate. Some of the early works to deal with these

extension are by Rudraiah et al. [6], Georgiadis and Cat-

ton [7], and Kladias and Prasad [8] who used the Darcy–

Brinkman (DB) model and Darcy–Brinkman–Forchhei-

mer (DBF) model for studying Benard convection in

porous media. Many more works are available on the

non-Darcy–Benard convection in a porous medium.

The growing volume of work devoted to this area is well

documented by the most recent reviews of Nield and Be-

jan [9] and Ingham and Pop [10].
ed.
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Nomenclature

c specific heat

d height of the porous layer

Da Darcy number,
leK
lfd

2

g gravitational acceleration

h inter phase heat transfer coefficient

H non-dimensional inter phase heat transfer

coefficient, hd2

ekf

k horizontal wave number

kf, ks thermal conductivities of fluid phase and

solid phase respectively

K permeability of the porous medium

Pr Prandtl number,
leðqcÞf

q0kf

p pressure

q velocity vector, (u, v)

Ra Rayleigh number,
q0gbðT l�T uÞKd

elf jf

T temperature

t time

(x, y) space coordinates

Greek symbols

a diffusivity ratio

b coefficient of thermal expansion

c porosity-modified conductivity ratio, ekf

ð1�eÞks

e porosity

j thermal diffusivity

le effective viscosity

lf fluid viscosity

qf fluid density

w non-dimensional stream function

h non-dimensional temperature of the fluid

phase

/ non-dimensional temperature of the solid

phase

$2 o2

ox2 þ o2

oy2

Subscripts/superscripts

f fluid

l lower

s solid

u upper

* non-dimensional

o reference
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Most of the works on convective heat transfer in por-

ous media have mainly been investigated under the

assumption that the fluid and the porous medium are

everywhere in local thermodynamic equilibrium (LTE),

although in many practical applications the solid and

the fluid phases are not in thermal equilibrium. Nield

and Bejan [9] have discussed a two-field model for en-

ergy equation. Instead of having a single energy equa-

tion, which describes the common temperature of the

saturated media, two equations are used for fluid and

solid phase separately. In the two-field model, the energy

equations are coupled by the terms, which account for

the heat lost to or gained from the other phase. Rees

and co-workers [11–14] in a series of studies have inves-

tigated the non-equilibrium effect on free convective

flows in porous media using Darcy model. The review

by Kuznetsov [15] gives a detailed information about

the works on thermal non-equilibrium effects.

In this paper we study the onset of convection in a

sparsely packed porous layer heated from below with

emphasis on how the condition for the onset of convec-

tion is modified when the solid and fluid phase are not in

local thermal equilibrium (non-LTE). As discussed by

Banu and Rees [12] when non-equilibrium effects are in-

cluded in the problem the linear analysis is modified and

it is still possible to proceed analytically to find the con-

dition for the onset of convection. We have also carried

out the asymptotic analysis for very small and very large

values of the inter phase heat transfer coefficient. This
work is more general than that of Banu and Rees [12]

in the sense that we recover their results in the limit as

the Darcy number Da tends to zero.
2. Mathematical formulation

We consider a Boussinesq fluid saturated porous layer

of depth d, which is heated from below and cooled from

above. A Cartesian coordinate system is chosen with the

origin on the lower boundary and y-axis vertically up-

ward. The lower surface is held at temperature Tl, while

the upper surface is at Tu. We assume that the solid and

fluid phases of the medium are not in local thermal equi-

librium and use a two-field model for temperatures. It is

assumed that at the bounding surfaces the solid and fluid

phases have identical temperatures. The Lapwood–

Brinkman model is employed for the momentum equa-

tion. The basic governing equations are (see [9])

r � q ¼ 0 ð1Þ

qf

1

e
oq

ot
þ 1

e2
q � rq

� �
¼ �rp � lf

K
qþ ler2qþ qfg ð2Þ

eðqcÞf

oT f

ot
þ ðqcÞfq � rT f ¼ ekfr2T f þ hðT s � T fÞ ð3Þ

ð1 � eÞðqcÞs

oT s

ot
¼ ð1 � eÞksr2T s � hðT s � T fÞ ð4Þ
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qf ¼ q0½1 � bðT f � T uÞ
 ð5Þ

We note that e very small refers to densely packed

porous media and e nearly one refers to sparsely packed

porous media. One important thing that needs special

attention is the idea that the fluid can be mechanically

incompressible, but that its volume can change with tem-

perature. This is at the centre of the approximation that

was first studied by Oberbeck and later by Boussinesq,

known as the Oberbeck–Boussinesq approximation. Re-

cently, Rajagopal et al. [16] have given a sound mathe-

matical basis for this approximation.

We confine ourselves to two-dimensional motions.

Further, the boundaries are assumed to be free–free

and isothermal. The basic state is assumed to be quies-

cent and we superimpose a small perturbation on it.

Eqs. (1)–(5) are now made dimensionless using following

transformations:

ðx; yÞ ¼ dðx�; y�Þ

ðu; vÞ ¼ ekf

ðqcÞfd
ðu�; v�Þ

p ¼ kfl
ðqcÞfK

p�

T f ¼ ðT l � T uÞh þ T u

T s ¼ ðT l � T uÞ/ þ T u

t ¼ ðqcÞfd
2

kf

t�

ð6Þ

We eliminate the pressure from the momentum trans-

port equation (2) and arrive at the vorticity transport

equation. The non-dimensional form of the vorticity

and the heat transport equations are obtained in the

form

Da
ePr

o

ot
r2w � Jðw;r2wÞ

� �
¼ Dar4w �r2w þ R

oh
ox

ð7Þ

oh
ot

� Jðw; hÞ � ow
ox

¼ r2h þ Hð/ � hÞ ð8Þ

a
o/
ot

¼ r2/ þ cHðh � /Þ ð9Þ

where w is the stream function, which is related to u and

v by

u ¼ � ow
oy

; v ¼ ow
ox

r2 � o2

ox2 þ o2

oy2 is the two-dimensional Laplacian operator

and J is the Jacobian. The asterisks have been removed

for simplicity.
ðp2 þ k2Þ½Daðp2 þ k2Þ þ 1
 Rk 0

k ðk2 þ p2 þ HÞ �H

0 cH �ðk2 þ p2 þ cH

0
B@
The non-dimensional groups that appear in the

above equations are

R ¼ q0gbðT l � T uÞKd
elfjf

c ¼ ekf

ð1 � eÞks

; H ¼ hd2

ekf

a ¼ ðqcÞs

ðqcÞf

kf

ks

¼ jf

js

Da ¼ le

lf

K

d2

Pr ¼ leðqcÞf

q0kf

ð10Þ

In Eq. (10), R is the Darcy–Rayleigh number which

expresses the balance between buoyancy and viscous

forces, c is the porosity modified conductivity ratio, H

is the non-dimensional inter phase heat transfer coeffi-

cient, a is the diffusivity ratio, Da is the Darcy number

and Pr is the Prandtl number.

We note that, the fluid and solid phases are not in

thermal equilibrium, the use of appropriate boundary

conditions for the temperature fields may pose a diffi-

culty. However we assume that the phases have equal

temperatures at the bounding surfaces. Therefore Eqs.

(7)–(9) are solved for stress-free isothermal boundaries

and hence the boundary conditions are

w ¼ o2w
oy2

¼ 0 on y ¼ 0 and 1 ð11aÞ

h ¼ / ¼ 0 on y ¼ 0 and 1 ð11bÞ
3. Linear stability theory

We assume that the equilibrium state is subjected to

infinitesimal perturbations. To study the linear theory

we use the linearized version of Eqs. (7)–(9). The princi-

ple of exchange of stability (PES) may be proved easily

so that the onset of convection is stationary (see Appen-

dix A for the proof of the validity of the PES).

We seek the solutions to the linearized equations in

the form

w ¼ A1 sin py cos kx ð12aÞ

h ¼ A2 sin py sin kx ð12bÞ

/ ¼ A3 sin py sin kx ð12cÞ
where k is the horizontal wave number and the A �s are

constants. Substitution of Eq. (12) into the linearized

version of the Eqs. (7)–(9) yields the following matrix

equation:
Þ

1
CA

A1

A2

A3

0
B@

1
CA ¼

0

0

0

0
B@

1
CA ð13Þ
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By setting the determinant of the coefficient matrix to

zero we get

R ¼ ðp2 þ k2Þ2

k2
þ Daðp2 þ k2Þ3

k2

 !
1 þ H

k2 þ p2 þ cH

� �

ð14Þ

For given values of H and c Eq. (14) describes the

neutral curves for the onset of convection. Further we

note from Eq. (14) that Rayleigh number is of order

(k�4) as k ! 0 and it is of order (k4) as k ! 1. We dis-

play neutral curves for H = 100 and for a range of values

of c in Fig. 1(a)–(d). These figures show the transition

from Brinkman regime to the Darcy regime (Da ! 0).

We observe from these figures that, in general the Ray-

leigh number R decreases as c increases. Thus the effect

of increasing the conductivity ratio is to destabilize the

system. The effect is more pronounced for small c. The

neutral curves are more close and branches are apart

for different c in case of Darcy regime while for Brink-

man regime it is reverse.

The value of the Rayleigh number R given in Eq. (14)

can be minimized with respect to the wave number k by
Fig. 1. Neutral curves for different
setting oR
ok ¼ 0 and solving this equation. However in the

present case it is highly impossible to obtain a straight-

forward closed form explicit expression for the minimiz-

ing value of k. Therefore, we use Newton–Raphson

iteration scheme to obtain the minimum values of R

and k as function of H and c.

In Fig. 2(a)–(d), we show the variation of the critical

Rayleigh number Rc with H for a range of values of c.

We observe from these figures that the critical Rayleigh

number is independent of c for very small values of H

while for large H the critical Rayleigh number decreases

with increasing c. For large c (P10) the critical Rayleigh

number is independent of H. The interphase heat trans-

fer coefficient H is very small means that there is almost

no transfer of heat between the phases, and therefore the

critical value is not affected by the properties of the solid

phase. On the other hand for large values of H that is, in

the LTE limit the critical value is based on the mean

properties of the medium and Rc is dependent on c.

For fixed c, Rc vary monotonically as H increases.

One important thing to note about the definition of

the Rayleigh number is that it is based on the properties

of the fluid. We now modify R and redefine it as
values of c, Da and H = 100.



Fig. 2. Variation of critical Rayleigh number Rc with H.
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RMP ¼ c
1 þ c

� �
R ¼ qfgbðT l � T uÞKd

½ejf þ ð1 � eÞjs
lf

ð15Þ

which is now based on the mean properties of the porous

medium. In fact it is this value, which is used in the local

thermal equilibrium (LTE) case.

In Fig. 3(a)–(d), we show the variation of RMP, the

critical Rayleigh number which is defined in terms of

the mean properties of the fluid with the inter phase heat

transfer coefficient H for specific values of c. It is inter-

esting to note that RMP approaches a common limit as

H !1, however the approach to the common limit is

different for different values of c. We also find that

RMP vary monotonically as H increases. It is interesting

to note that, for very small H, and large c, the convec-

tion can be completely suppressed. The critical Rayleigh

number based on the mean properties is independent of

H for large c.

The variation of the critical wave number kc with H

for different values of the conductivity ratio c is shown

in Fig. 4(a)–(d). We observe that the critical wave num-

ber kc approaches a common limit for small Da as

H ! 0 and H ! 1. However for large Da, kc ap-

proaches two different limits, one as H ! 0 and another

as H ! 1. For very small H the solid phase ceases to

affect the thermal field of the fluid. On the other hand
as H !1, the solid and fluid phase have almost equal

temperatures. Therefore in these two limiting cases, the

conductivity ratio has little effect on the critical wave

number. For the intermediate values of H, the critical

wave number kc increases with decreasing values of c
and that the critical wave number is always greater than

the LTE case.
4. Asymptotic analysis

Case 1: For very small values of H

When H is very small the critical value of the Ray-

leigh number R is slightly above the critical value for

the LTE case. Accordingly we expand R given by Eq.

(14) in a power series in H as

R ¼ ðp2 þ k2Þ2

k2
þ Daðp2 þ k2Þ3

k2

 !

þ ðp2 þ k2Þ
k2

þ Daðp2 þ k2Þ2

k2

 !
H

� 1

k2
þ Daðp2 þ k2Þ

k2

� �
cH 2 þ � � � ð16Þ



Fig. 3. Variation of critical Rayleigh number with H.
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To minimize R up to O(H2) we set oR/ok = 0 and obtain

an expression of the form

ð4Dak6 þ ð2 þ 6Dap2Þk4 � ð2p4 þ 2Dap6ÞÞ
þ ð2Dak4 � 2p2 � 2Dap4ÞH þ ð2 þ 2Dap2ÞH 2c

¼ 0 ð17Þ

We also expand k in power series of H as

k ¼ k0 þ k1H þ k2H 2 þ � � � ð18Þ

where k0 is the critical wave number for the LTE case

and is given by the expression

k2
0 ¼

�ðDap2 þ 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDap2 þ 1Þð9Dap2 þ 1Þ

p
4Da

ð19Þ

Substituting Eq. (18) into Eq. (17) and rearranging

the terms and then equating the coefficients of same

powers of H will allow us to find k1 and k2. Thus we

obtain

k1 ¼
D1

D
ð20Þ

k2 ¼
D2

D
ð21Þ
where

D1 ¼ p2 þ Dap4 � Dak4
0

D2 ¼ ð2 þ 2Dap2Þc þ ð60Dak4
0 þ 12k2

0 þ 36Dak2
0p

2Þk2
1

þ 8Dak3
0k1

D ¼ 12Dak5
0 þ 4k3

0Daþ 12Dap2k3
0

With these values of k0, k1 and k2, Eq. (18) gives the

critical wave number and consequently using this in (16)

one can obtain the critical Rayleigh number for small H.

Case 2: For very large values of H

For large values H, the critical Rayleigh number

takes the form

Rc ¼
ðp2 þ k2Þ2

k2
þ Da

ðp2 þ k2Þ3

k2

 !

� 1 þ c
c

� ðp2 þ k2Þ
c2

H�1 þ ðp2 þ k2Þ2

c3
H�2

 !
ð22Þ

We minimize this with respect to k in a similar way as

we did in the small H case and obtain the following

expression:



Fig. 4. Variation of critical wave number with H.
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8Dak10 þ 6ð5Dap2 þ 1Þk8 þ 4ð10Dap4 þ 4p2Þk6
�
þ2ð10Dap6 þ 6p4Þk4 � 2p8 � 2Dap10

�
H�2

� 6cDak8 þ 4cðDap2 þ 3Dap2cÞk6
�

þ2cp2ð3 þ 2Dap2Þk4 � 2cp6ð1 þ Dap2Þ
�
H�1

þ 4Daðc2 þ c3Þk6 þ 2ð1 þ 3Dap2Þðc2 þ c3Þk4

� p4 � Dap6 ¼ 0 ð23Þ

Similarly we expand k in the form

k ¼ k0 þ
k1

H
þ k2

H 2
þ � � � ð24Þ

where k0 is given by Eq. (19) and k1, k2 are to be found.

Substituting Eq. (24) into Eq. (23) and equating the

coefficients of like powers of H we can find k1 and k2

and are given by

k1 ¼
D0

1

D0 ð25Þ

k2 ¼
D0

2

D0 ð26Þ
where

D0
1 ¼ 6Dack8

0 þ 4cðDap2 þ 3Dacp2Þk6
0

þ 2cð3p2 þ 6Dap4Þk4
0 � 2cp2ðp4 þ Dap6Þ

D0
2 ¼ 48Dack7

0 þ 24cðDap2 þ 3Dacp2Þk5
0

�
þ8cð3p2 þ 6Dap4Þk3

0

�
k1

� ð8Dak10
0 þ 6ð5Dap2 þ 1Þk8

0 þ 4ð10Dap4 þ 4p2Þk6
0

�
þ2ð10Dap6 þ 6p4Þk4

0 � 2p8 � 2Dap10Þ
�ð60Daðc2 þ c3Þk4

0 þ 12ð1 þ 3Dap2Þðc2 þ c3Þk2
0Þ
�
k2

1

D0 ¼ 24Daðc2 þ c3Þk5
0 þ 8ð1 þ 3Dap2Þðc2 þ c3Þk3

0

Again with these values of k0, k1 and k2, we compute

the critical wave number kc from Eq. (24) and finally

using this value of kc, one can obtain the critical Ray-

leigh number Rc from Eq. (22) for large H.

The expression for the critical Rayleigh number Rc

and the critical wave number kc for both small H and

large H are evaluated for fixed value of Da = 100 and

comparison of these values with the exact values ob-

tained earlier are given in Tables 1 and 2. It is important

to note that an excellent agreement between these two

results are found when H is small. On the other hand

reasonably good agreement is found when H is large.



Table 2

Comparison of Exact and Asymptotic solutions for large values

of H

Log10H kc(E) kc(A) Rc(E) Rc(A)

c = 1

2.5 2.237412 2.237384 129390.20 129390.80

3.0 2.229131 2.229130 131395.20 131395.50

3.5 2.226373 2.226373 132055.00 132055.00

4.0 2.225486 2.225486 132266.30 132266.30

4.5 2.225204 2.225204 132333.40 132333.40

5.0 2.225115 2.225115 132354.60 132354.60

5.5 2.225087 2.225087 132361.40 132361.40

6.0 2.225078 2.225078 132363.50 132363.50

c = 0.01

4.5 2.250385 2.237865 6386385.00 6387308.00

5.0 2.233200 2.229487 6587409.00 6587455.00

5.5 2.227656 2.226506 6653446.00 6653450.00

6.0 2.225892 2.225530 6674586.00 6674587.00

6.5 2.225332 2.225219 6681298.00 6681298.00

7.0 2.225156 2.225120 6683422.00 6683423.00

7.5 2.225100 2.225088 6684095.00 6684095.00

8.0 2.225082 2.225078 6684308.00 6684307.00

Note. E denotes exact and A denotes asymptotic.

Table 1

Comparison of Exact and Asymptotic solutions for small values

of H

Log10H kc(E) kc(A) Rc(E) Rc(A)

c = 1

�2.0 2.223085 2.223085 65945.95 65945.95

�1.5 2.223890 2.223894 66041.82 66041.82

�1.0 2.226392 2.226431 66343.04 66343.04

�0.5 2.233898 2.234266 67276.30 67276.30

0.0 2.254083 2.257160 70049.47 70049.47

0.5 2.293710 2.310735 77391.09 77391.09

c = 0.01

�2.0 2.223085 2.223086 65945.98 65945.98

�1.5 2.223895 2.223899 66042.13 66042.13

�1.0 2.226441 2.226481 66345.99 66343.98

�0.5 2.234371 2.234767 67305.19 67305.20

0.0 2.258288 2.262172 70322.34 70322.62

0.5 2.324203 2.360850 79725.57 79751.59
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5. Conclusion

The stability of a horizontal fluid saturated sparsely

packed porous layer heated from below and cooled form

above when the solid and fluid phases are not in local

thermal equilibrium is examined analytically. Brinkman

model with inertia term is used for the momentum equa-

tion and a two-field model is used for energy equation

each representing the solid and fluid phases separately.

Although the inertia term is included in the general for-

mulation, it does not affect the stability condition since
the basic state is motionless. The condition for the onset

of convection is obtained analytically. We display the

results in Figs. 1–4 for a wide range of values of c and

H and for Da = 102, 10�1, 10�2 and 10�3 that show

the transition from Brinkman regime to the Darcy

regime.

The effect of increasing conductivity ratio c is to de-

crease the critical Rayleigh number and hence the effect

of increasing c is to destabilize the system. The effect is

more pronounced for very small c. The critical Rayleigh

number is independent of c for very small H while for

large H, it decreases with increasing c.

It is found that the critical Rayleigh number RMP

based on the mean properties of the media vary mono-

tonically with H and approaches a common limit as

H ! 1. It is also observed that the critical wave number

kc approaches a common limit as H ! 0 and H ! 1 in

the Darcy limit while it approaches two different limits,

one as H ! 0 and another as H ! 1 in the Brinkman

regime. An excellent agreement is found between the ex-

act solutions and the solutions obtained from asymp-

totic analysis. The results of the LTE case are

recovered in the large H limit and the results of Darcy

regime are recovered in the small Da limit.
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Appendix A. Eqs. (7)–(9), on neglecting nonlinear

terms, become
1 þ Da
ePr

o

ot

� �
r2w � Dar4w � R

oh
ox

¼ 0 ðA:1Þ

oh
ot

�r2h � Hð/ � hÞ � ow
ox

¼ 0 ðA:2Þ

a
o/
ot

�r2/ � cHðh � /Þ ¼ 0 ðA:3Þ

Assume the solution of Eqs. (A.1)–(A.3) in the form

w ¼ ertWðyÞ cos kx

h ¼ ertHðyÞ sin kx

/ ¼ ertUðyÞ sin kx

ðA:4Þ

where r is the growth rate, k is the horizontal wave

number and W(y), H(y) and U(y) are the amplitudes

of perturbation stream function, perturbation fluid tem-

perature and perturbation solid temperature respec-

tively.
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Substituting Eq. (A.4) into Eqs. (A.1)–(A.3), we get

1 þ Da
ePr

r

� �
ðD2 � k2ÞW � DaðD2 � k2Þ2W � RkH ¼ 0

ðA:5Þ

rH � ðD2 � k2ÞH � HðU � HÞ � kW ¼ 0 ðA:6Þ

arU � ðD2 � k2ÞU � cHðH � UÞ ¼ 0 ðA:7Þ

where D ¼ d
dy.

Multiplying Eq. (A.5) by W* the complex conjugate

of W, integrating between y = 0 and 1 and using the

boundary conditions yields

1 þ Da
ePr

r

� �
hjDWj2 þ k2jWj2i þ DahjD2Wj2 þ 2k2jDWj2

þ k4jWj2i þ RkhW�Hi ¼ 0 ðA:8Þ

where h� � �i ¼
R 1

0
ð� � �Þdy and * indicate that the quantity

is the complex conjugate. Taking complex conjugate of

Eq. (A.6) and multiplying the resulting equation by

Hand integrating between y = 0 and 1 and using the

boundary conditions, we obtain

khW�Hi ¼ �r�hjHj2i � hjDHj2 þ jkHj2i

þ HhU�Hi � HhjHj2i ðA:9Þ

Using Eq. (A.9) in Eq. (A.8) we get

1 þ Da
ePr

r

� �
hjDWj2 þ k2jwj2i þ DahjD2Wj2 þ 2k2jDWj2

þ k4jWj2i � Rr�hjHj2i � RhjDHj2 þ k2jHj2i
þ RHhU�Hi � RHhjHj2i ¼ 0 ðA:10Þ

Multiplying Eq. (A.7) by U*, integrating between y = 0

and 1 and using the boundary conditions we obtain

HhU�Hi ¼ a
c
rhjUj2i þ 1

c
hjDUj2 þ k2jUj2i þ HhjUj2i

ðA:11Þ

On using Eq. (A.11) in Eq. (A.10) we get

1 þ Da
ePr

r

� �
hjDWj2 þ k2jWj2i þ DahjD2Wj2 þ 2k2jDWj2

þ k4jWj2i � Rr�hjHj2i � RhjDHj2 þ k2jHj2i

þ R
a
c
rhjUj2i þ 1

c
hjDUj2 þ k2jUj2i þ HhjUj2i

� �
� RHhjHj2i ¼ 0 ðA:12Þ

Writing r = Re(r) + Im(r) = r1 + ir2 in Eq. (A.12) and

equating real and imaginary parts we get
ImðrÞ Da
ePr

hjDWj2 þ k2jWj2i þ RhjHj2i þ Ra
c
hjUj2i

� �
¼ 0

ðA:13Þ

Since the quantity within the brackets is positive definite

we must have Im(r) = 0. Hence the principle of ex-

change of stability is proved.
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